
Solving Sudoku Puzzles Using
Backtracking and Simulated Annealing Algorithms

Aditya Samaroo
College of Engineering

Northeastern University

Abstract

Sudoku is a popular puzzle around the world as
well as in the programming community. There
simple rules and only a single solution for each
unique puzzle which can be handled using deduc-
tion. The objective of this paper is to build two
very different algorithms to solve three Sudoku
puzzles with varying difficulty. The performance
of each algorithm will be based on its time, and
things specific to each algorithm such as number
of times the function is called recursively for the
backtracking algorithm and the number of itera-
tions for the simulated annealing algorithm. While
one algorithm is tried and true for solving Sudoku
puzzles, the other provides a more random ap-
proach. The results prove what is already known
about the backtracking algorithm but also exposes
an issue when it comes to how long the simulated
annealing algorithm takes to converge.

Introduction

Sudoku is a logic based number placement puzzle. The
objective is to fill a 9×9 grid with digits such that each
row, column and 3×3 sub-grid contains all of the dig-
its from 1 to 9 without repeating. The difficulty of the
puzzle depends on the numbers in the grid at the be-
ginning of the puzzle and where they are placed. Each
Sudoku puzzle contains a single solution. In terms of
artificial intelligence Sudoku is a deterministic, static
and discrete environment where a single agent places
numbers in the correct order to gain a valid solution.

A variety of algorithms can be used to solve Sudoku
puzzles but choosing the right one depends on the
users limitations such as time and memory. Algo-
rithms such as breadth-first search (BFS), depth-first
search (DFS) and backtracking can be used but each
have their drawbacks. More complex algorithms such
as random hillclimb, simulated annealing can also
solve Sudoku puzzles but do introduce the stochastic
variable to the environment, which can either benefit
or impede the algorithms solution time.

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

Figure 1: Unsolved Sudoku Board

Background
Search algorithms such as BFS and DFS can be used to
solve Sudoku puzzles. Each space in the grid is a node
with a possible solution of digits 1 to 9. The state space
in this case is O(bm) without pruning which is equal
to 981 or approximately 1.966270505 ∗ 1077 which can
pose a problem to users in terms of time and available
memory. By pruning each node to only allow valid so-
lutions, the state space can be reduced more and more
as the tree is expanded and values are placed in the
correct spaces. Algorithm 1 shows the pseudocode that
can be used in order to solve a Sudoku puzzle.

Related Work
In a paper by Mulisu and Winter, they used a hybrid
approach for solving Sudoku puzzles which involves
a combination of constraint programming and local
search (Musliu and Winter 2017). In their approach,
they reduce the domains for each cell variable un-
til all variables are arc consistent before performing
the search. This improves upon the BFS and DFS ap-
proaches by pruning the invalid solutions from each
cells and reducing the state space. The downside is that
problems do arise for their algorithm once the search
space increases. The paper compared their algorithm’s
performance to that of simmulated annealing, and two
different constraint programming based solvers. They

Algorithm 1 General Search
procedure SEARCH(problem)

node← a node with state = problem.Initial
if problem.GoalTest(node.state) then

return Solution(node)
f rontier ← a FIFO/LIFO queue
explored← an empty set
while f rontier.isEmpty() = FALSE do

node← POP(f rontier)
add node.state to explored
for each action in problem(node.STATE)
child ← child.node(problem, node, ac-

tion)
if child.state is not in f rontier then

if problem.GoalTest(child.State) then
return Solution(child)
f rontier INSERT(child, f rontier)

end if
end if

end while
end if

end procedure

found that their approach did well compared to the CP
based solvers once the state-space was increased.

Another group used β-hill climbing to solve Sudoku
puzzles (Al-Betar et al. 2017). This method is a much
more stochastic approach, filling in the grid with ran-
dom numbers and then changing each space over time
to improve the board state. Another paper by Al-Betar
mentioned various hill climbing algorithms to choose
from, such as Simulated Annealing (SA), Tabu Search
(TS), Greedy Randomize Adaptive Search Procedure
(GRASP), Variable Neighborhood Search (VNS) and
Iterated Local Search (ILS) (Al-Betar 2016). The β ap-
proach attempts to improve the board state and if the
algorithm fails to do so, it compares β, which is in the
domain of 0 to 1, to a random number to determine
whether or not the change to the board will go through
or not. This algorithm did yield a 100% success rate for
a majority of the puzzles while changing the different
parameters in the algorithm. One of the parametersN ,
represents the neighboring operator which determines
the probability of a space taking on its neighbors value
while β represents the probability of a space generat-
ing a completely different value from the range 1 to
9. The algorithm was tested by varying one parameter
while keeping the other constant.

Project Description
For my project, I wanted to compare two different al-
gorithms in terms of timing to see how well they can
solve a Sudoku puzzle. I chose both the backtrack-
ing algorithm as well as the simulated annealing al-
gorithm as the most straightforward ways to do so in
the given time period. Backtracking involves building
a solution by going from empty space to space and fill-

Figure 2: Backtracking Algorithm Flowchart

ing in values that are valid and available. The algo-
rithm backtracks when a space does not have a valid
solution, replacing its previous solution with a new
valid number before continuing. The algorithm is fault
proof in the sense that it will only return no solution if
the Sudoku board violates its own rules to begin with.

Algorithm 2 Backtracking Algorithm
procedure BACKTRACK(assignment, csp) returns a
solution, or failure

if assignment is complete then
return assignment

end if
var ← Select-Unassigned-Variable(csp) for each

value in ODV(var, assignment, csp) do
if value is consistent to assignment then

add {var = value} to assignment
if in f erences 6= f ailure then

add in f erences to assignment
result← BACKTRACK(assignment, csp)
if result 6= f ailure then

return result
end if

end if
end if
remove {var = value} and in f erences from

assignment
return f ailure

end procedure

Note that in the pseudo-code the solve function
is called recursively with the previous information
which is essentially the backtracking.

The Simulated Annealing algorithm involves filling
in the starting board with random integers. It then ran-
domly chooses two neighbors that have been filled
in to be candidates for a swap. The algorithm then
”scores” the new board by assigning points based on
how many unique numbers there are in each column,

Figure 3: Simulated Annealing Algorithm Flowchart

row and sub-grid, where the lower the score is the bet-
ter. If the new board score is better than the old board,
then the swap goes through, otherwise a probability is
calculated, given by:

P = e(
δs
T) (1)

δs is the difference between the current score and the
”candidate” score. If the random number is greater
than the probability generated then the change goes
through, otherwise the algorithm goes back to the be-
ginning and repeats the same steps. T represents the
”temperature” of the system, where the ”warmer” the
system is, the more volatility and stochasticity there is.
As the system ”cools” the number of changes that goes
through decreases until a global minimum is reached.

I did not choose to include BFS or DFS since the
backtracking algorithm incorporates some of the ideas

Algorithm 3 Simulated Annealing Algorithm
procedure SIMULATED-ANNEALING(problem)

returns a state that is a local minimum
T ← temperature
while criteria is not met do

Pick random neighbor
Snew ← neighbor(s)
if Snew ≥ Sold then

S← Snew
else if P ≥ random(0, 1) then

S← Snew
else

No change in S
end if
T ← cooler

end while
return solution

end procedure

8 2 9 4
7 3 8

1 6
8 6 3 9

9 1 9
9 4 5 7 7

5 3 4
6 3 7

1 2 5

Figure 4: Easy Sudoku

from the search algorithms. Instead of presenting all
possible solutions in a node, the backtracking algo-
rithm already prunes invalid solutions from the node
so the state space is that much smaller to begin with.

Experiment
Three different Sudoku puzzles were generated from
an online source with three different difficulties: easy,
medium, and hard. The easy difficulty puzzle contains
54 empty spaces, the medium puzzle has 59 empty
spaces and the hard puzzle has 56 empty spaces. Al-
though the hardest difficulty puzzle has less empty
spaces than that of the medium puzzle, the placement
of the numbers in the starting grid also plays a role in
how difficult a puzzle may be.

To measure performance of each algorithm I
recorded the amount of time each code took for each of
the puzzles. For the backtracking puzzle specifically, I
also recorded the number of times the algorithm back-
tracked before returning a valid solution. For the sim-
ulated annealing algorithm, I recorded the score ev-
ery 1000 iterations, as well as the best score that it had
achieved, capping the number of iterations at 400,000

2 5 7 4
2 9

1 6 8
1 3

4 2 7
9 8

4 7 3
6 2 1

Figure 5: Medium Sudoku

4 1 2 6
4 5 6

7 8
3

9 8
3 6 9 1

1 3 9 7
7 4 5 8

9

Figure 6: Hard Sudoku

to prevent an infinite loop. I also chose to lower the the
temperature of the system by .001% each iteration to
allow for more data to be collected.

For the easy puzzle, the backtracking algorithm
took 0.061 seconds and backtracked 2,155 times. The
medium puzzle took 0.22 seconds and backtracked
8,203 times, while the hard puzzle took 3.83 seconds
and backtracked 141,793 times. The results are trivial
since this algorithm has been proven time and time
again to be the optimal way to solve 9×9 Sudoku
boards.

Algorithm Time (sec) Difficulty Backtracks
Backtracking 0.061 Easy 2,155
Backtracking 0.22 Medium 8,203
Backtracking 3.83 Hard 141,793

For the Simulated Annealing algorithm, the easy
puzzle took 9.75 seconds and 35,000 iterations. The
algorithm was then unable to solve the medium and
hard puzzles since it reached the break condition im-
plemented in the code.

Algorithm Time (sec) Difficulty Iterations
SA 9.75 Easy 35,000
SA 104.75 Medium 400,000
SA 111.207 Hard 400,000

For the easy puzzle we can see that the algorithm
converged on a solution around 35,000 iteration (Fig-

Figure 7: Score of the Easy Sudoku vs. Iterations

Figure 8: Score of the Medium Sudoku vs. Iterations

ure 7). From the beginning, there was a great improve-
ment and there is an overall trend to a minimum as the
iterations increased.

For the medium and hard difficulty Sudoku puz-
zles, the same trend is apparent as in the easy version.
At approximately 30,000 to 40,000 iterations for the
medium puzzle (Figure 8), it seems that the algorithm
was very close to converging to a solution but was un-
able to. The stochasticity of the puzzle then came into
play and brought the board to a state that was worse
than what it was previously. This then causes a pit-
fall at around 55,000 to 60,000 iterations and then it
plateaus after 100,000 iterations. The final puzzle after
the algorithm timed out was unable to find swap two
numbers that were conflicting in two columns. This
was consistent after several attempts. The same story
also applies for the hard puzzle (Figure 9), at around
10,000 to 15,000 iterations the algorithm was close to

Figure 9: Score of the Hard Sudoku vs. Iterations

converging to a valid solution. It then goes to a worse
board state before re-converging at the same score at
around 50,000 iterations before timing out.

Conclusion

In this paper, the backtracking and simulated anneal-
ing algorithms are both very different ways to arrive
at the same singular solution. The backtracking algo-
rithm provides a simple yet effective approach, while
the simulated annealing method involves probability,
randomness to an environment that is deterministic.

On a 9×9 Sudoku board the differences are ap-
parent as the difficulty increases. The SA algorithm
was unable to solve the two more difficult puzzles, it
plateaued after 100,000 iterations and was not able to
find the last couple of spaces and return a valid solu-
tion. The issue may be temperature parameter, proba-
bility check or the algorithm did not have enough time
to converge to a valid solution. I believe that it is the
former, since both algorithms were very close even be-
fore the iteration cap was met. As the board moves
from a 9×9 grid to an N×N grid, the simulated an-
nealing algorithm may have a better time tackling and
solving the board compared to the backtracking algo-
rithm with some parameter tweaking.

Future work on this project would involve test-
ing other algorithms once the simulated annealing
algorithm is perfected. Comparing simulated anneal-
ing to other stochastic algorithms can also be done
with some seeding in order to maintain consistency.
Another point to work on for this project includes
unifying all of the algorithms into one program,
allowing the user to input a Sudoku puzzle of their
choice and choose the algorithm(s) of their choice to
solve.

References
[Al-Betar et al. 2017] Al-Betar, M. A.; Awadallah, M. A.;
Bolaji, A. L.; and Alijla, B. O. 2017. β-hill climbing al-
gorithm for sudoku game. In 2017 Palestinian Interna-
tional Conference on Information and Communication Tech-
nology (PICICT), 84–88.

[Al-Betar 2016] Al-Betar, M. 2016. β -hill climbing: an
exploratory local search. Neural Computing and Appli-
cations 28.

[Crook 2009] Crook, J. 2009. A pencil-and-paper algo-
rithm for solving sudoku puzzles. Notices of the Ameri-
can Mathematical Society 56.

[DELAHAYE 2006] DELAHAYE, J.-P. 2006. The science
behind sudoku. Scientific American 294(6):80–87.

[Musliu and Winter 2017] Musliu, N., and Winter, F.
2017. A hybrid approach for the sudoku problem: Us-
ing constraint programming in iterated local search.
IEEE Intelligent Systems 32(2):52–62.

[Narayanaswamy, Ma, and Shrivastava 2019]
Narayanaswamy, A.; Ma, Y. P.; and Shrivastava,
P. 2019. Image detection and digit recognition to solve
sudoku as a constraint satisfaction problem. CoRR
abs/1905.10701.

[Russell and Norvig 2009] Russell, S., and Norvig, P.
2009. Artificial Intelligence: A Modern Approach. USA:
Prentice Hall Press, 3rd edition.

Raw Code

Backtracking Algorithm

import time

t0 = time.time()

ez_board = [

[8, 2, 9, 0, 0, 0, 0, 4, 0],

[0, 0, 0, 7, 0, 0, 3, 8, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 6],

[0, 0, 8, 1, 0, 0, 6, 3, 9],

[0, 0, 0, 0, 0, 9, 0, 0, 0],

[0, 9, 4, 5, 0, 7, 0, 0, 0],

[5, 0, 0, 0, 0, 0, 0, 0, 4],

[6, 0, 0, 0, 0, 3, 7, 0, 0],

[0, 0, 0, 0, 1, 0, 2, 5, 0]

]

t1 = time.time()

medium_board = [

[0, 2, 0, 5, 0, 7, 0, 4, 0],

[0, 0, 0, 2, 0, 0, 0, 0, 9],

[1, 0, 0, 0, 0, 0, 6, 0, 8],

[0, 1, 0, 3, 0, 0, 0, 0, 0],

[4, 0, 2, 7, 0, 0, 0, 0, 0],

[0, 0, 9, 0, 0, 0, 8, 0, 0],

[0, 4, 0, 0, 0, 0, 7, 3, 0],

[0, 0, 0, 0, 6, 2, 0, 0, 1],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

]

t2 = time.time()

hard_board = [

[0, 4, 0, 1, 0, 0, 2, 0, 6],

[0, 0, 0, 4, 5, 6, 0, 0, 0],

[7, 0, 0, 0, 8, 0, 0, 0, 0],

[0, 0, 0, 3, 0, 0, 0, 0, 0],

[0, 0, 9, 0, 0, 8, 0, 0, 0],

[0, 0, 3, 6, 0, 0, 9, 1, 0],

[1, 3, 0, 0, 0, 0, 0, 9, 7],

[0, 7, 0, 0, 4, 0, 5, 0, 8],

[9, 0, 0, 0, 0, 0, 0, 0, 0]

]

class Counter(object):

counts = {}

@staticmethod

def count(func):

def wrapped(*args,**kwargs):

if func.__name__ in Counter.counts.keys():

Counter.counts[func.__name__] += 1

1

else:

Counter.counts[func.__name__] = 1

return func(*args,**kwargs)

return wrapped

@Counter.count

def solve(bo):

find = find_empty(bo)

if not find:

return True

else:

row, col = find

for i in range(1, 10):

if valid(bo, i, (row, col)):

bo[row][col] = i

if solve(bo):

return True

bo[row][col] = 0

return False

def valid(bo, num, pos):

Check row

for i in range(len(bo[0])):

if bo[pos[0]][i] == num and pos[1] != i:

return False

Check column

for i in range(len(bo)):

if bo[i][pos[1]] == num and pos[0] != i:

return False

Check box

box_x = pos[1] // 3

box_y = pos[0] // 3

for i in range(box_y * 3, box_y * 3 + 3):

for j in range(box_x * 3, box_x * 3 + 3):

if bo[i][j] == num and (i, j) != pos:

return False

return True

def print_board(bo):

for i in range(len(bo)):

if i % 3 == 0 and i != 0:

print("- - - - - - - - - - - - - ")

for j in range(len(bo[0])):

if j % 3 == 0 and j != 0:

print(" | ", end="")

if j == 8:

print(bo[i][j])

else:

print(str(bo[i][j]) + " ", end="")

def find_empty(bo):

for i in range(len(bo)):

for j in range(len(bo[0])):

if bo[i][j] == 0:

return i, j # row, col

return None

print_board(ez_board)

print("\n")

solve(ez_board)

print("Solved!")

print_board(ez_board)

print(Counter.counts)

t3 = time.time()

t4 = t3-t0

print(t4)

print_board(medium_board)

print("\n")

solve(medium_board)

print("Solved!")

print("\n")

print_board(medium_board)

print(Counter.counts)

t5 = time.time()

t6 = t5-t0

print(t6)

print_board(hard_board)

print("\n")

solve(hard_board)

print("Solved!")

print("\n")

print_board(hard_board)

print(Counter.counts)

t7 = time.time()

t8 = t7-t0

print(t8)

Simulated Annealing Algorithm

import sys

from copy import deepcopy

from math import exp

from random import shuffle, random, sample, randint

import numpy as np

import time

def get_column_indices(i, type="data index"):

"""

Get all indices for the column of ith index

or for the ith column (depending on type)

"""

if type == "data index":

column = i % 9

elif type == "column index":

column = i

indices = [column + 9 * j for j in range(9)]

return indices

def get_row_indices(i, type="data index"):

"""

Get all indices for the row of ith index

or for the ith row (depending on type)

"""

if type == "data index":

row = i // 9

elif type == "row index":

row = i

indices = [j + 9 * row for j in range(9)]

return indices

class SudokuPuzzle(object):

def __init__(self, data=None, original_entries=None):

"""

data - input puzzle as one array, all rows concatenated.

(default - incomplete puzzle)

original_entries - for inheritance of the original entries of one

sudoku puzzle's original, immutable entries we don't

allow to change between random steps.

"""

if data is None:

self.data = np.array([5, 3, 0, 0, 7, 0, 0, 0, 0,

6, 0, 0, 1, 9, 5, 0, 0, 0,

0, 9, 8, 0, 0, 0, 0, 6, 0,

8, 0, 0, 0, 6, 0, 0, 0, 3,

4, 0, 0, 8, 0, 3, 0, 0, 1,

7, 0, 0, 0, 2, 0, 0, 0, 6,

0, 6, 0, 0, 0, 0, 2, 8, 0,

0, 0, 0, 4, 1, 9, 0, 0, 5,

0, 0, 0, 0, 8, 0, 0, 7, 9])

else:

self.data = data

if original_entries is None:

self.original_entries = np.arange(81)[self.data > 0]

else:

self.original_entries = original_entries

def randomize_on_zeroes(self):

"""

Go through entries, replace incomplete entries (zeroes)

with random numbers.

"""

for num in range(9):

block_indices = self.get_block_indices(num)

block = self.data[block_indices]

zero_indices = [ind for i, ind in enumerate(block_indices) if block[i] == 0]

to_fill = [i for i in range(1, 10) if i not in block]

shuffle(to_fill)

for ind, value in zip(zero_indices, to_fill):

self.data[ind] = value

def get_block_indices(self, k, ignore_originals=False):

"""

Get data indices for kth block of puzzle.

"""

row_offset = (k // 3) * 3

col_offset = (k % 3) * 3

indices = [col_offset + (j % 3) + 9 * (row_offset + (j // 3)) for j in range(9)]

if ignore_originals:

indices = filter(lambda x: x not in self.original_entries, indices)

return indices

def view_results(self):

"""

Visualize results as a 9 by 9 grid

(given as a two-dimensional numpy array)

"""

def notzero(s):

if s != 0:

return str(s)

if s == 0:

return "X"

results = np.array([self.data[get_row_indices(j, type="row index")]

for j in range(9)])

out_s = ""

for i, row in enumerate(results):

if i % 3 == 0:

out_s += "=" * 25 + '\n'

out_s += "| " + " | ".join(

[" ".join(notzero(s) for s in list(row)[3 * (k - 1):3 * k])

for k in range(1, 4)]) + " |\n"

out_s += "=" * 25 + '\n'

print(out_s)

def score_board(self):

"""

Score board by viewing every row and column and giving

-1 points for each unique entry.

"""

score = 0

for row in range(9):

score -= len(set(self.data[get_row_indices(row, type="row index")]))

for col in range(9):

score -= len(set(self.data[get_column_indices(col, type="column index")]))

return score

def make_candidate_data(self):

"""

Generates "neighbor" board by randomly picking

a square, then swapping two small squares within.

"""

new_data = deepcopy(self.data)

block = randint(0, 8)

num_in_block = len(self.get_block_indices(block, ignore_originals=True))

random_squares = sample(range(num_in_block), 2)

square1, square2 = [self.get_block_indices(block, ignore_originals=True)[ind]

for ind in random_squares]

new_data[square1], new_data[square2] = new_data[square2], new_data[square1]

return new_data

def sudoku_solver(input_data=None):

"""

Uses a simulated annealing technique to solve a Sudoku puzzle.

Randomly fills out the sub-squares to be consistent sub-solutions.

Scores a puzzle by giving a -1 for every unique element

in each row or each column. Best solution has a score of -162.

(This is our stopping rule.)

Candidate for new puzzle is created by randomly selecting

sub-square, then randomly flipping two of its entries, evaluating

the new score. The delta_S is the difference between the scores.

Let T be the global temperature of our system, with a geometric

schedule for decreasing (perhaps by T <- .999 T).

If U is drawn uniformly from [0,1], and exp((delta_S/T)) > U,

then we accept the candidate solution as our new state.

"""

SP = SudokuPuzzle(input_data)

print("Original Puzzle:")

SP.view_results()

SP.randomize_on_zeroes()

best_SP = deepcopy(SP)

current_score = SP.score_board()

best_score = current_score

T = .5

count = 0

while count < 400000:

try:

if count % 1000 == 0:

print("Iteration %s, \t T = %.5f,

\t best_score = %s, \t current_score = %s" %

(count, T, best_score, current_score))

candidate_data = SP.make_candidate_data()

SP_candidate = SudokuPuzzle(candidate_data, SP.original_entries)

candidate_score = SP_candidate.score_board()

delta_S = float(current_score - candidate_score)

if exp((delta_S / T)) - random() > 0:

SP = SP_candidate

current_score = candidate_score

if current_score < best_score:

best_SP = deepcopy(SP)

best_score = best_SP.score_board()

if candidate_score == -162:

SP = SP_candidate

break

T = .99999 * T

count += 1

except:

print("Hit an inexplicable numerical error. Try again.")

if best_score == -162:

print("\nSOLVED THE PUZZLE.")

else:

print("\nDIDN'T SOLVE. (%s/%s points). Try again." % (best_score, -162))

print("\nFinal Puzzle:")

SP.view_results()

if __name__ == "__main__":

if len(sys.argv) > 1:

try:

input_puzzle = np.array([int(s) for s in sys.argv[1]])

except:

print("Puzzle must be 81 consecutive integers, 0s for skipped entries.")

assert len(input_puzzle) == 81, "Puzzle must have 81 entries."

t0 = time.time()

sudoku_solver(input_data=input_puzzle)

t1 = time.time()

t = t1 - t0

print(t)

else:

sudoku_solver()

python sudoku_SA.py

829000040000700380000001006008100639000009000094507000500000004600003700000010250

python sudoku_SA.py

020507040000200009100000608010300000420700000009000800040000730000062001000000000

python sudoku_SA.py

040100206000456000700080000000300000009008000003600910130000097070040508900000000

