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Abstract

The purpose of this thesis is to introduce the reader to the world of quantum
computing. Beginning with quantum harmonic oscillators as well as the
basics of quantum gates and building quantum circuits. It will end with a
research application of quantum computing and steps to be taken looking
forward.
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Chapter 1

Introduction

The idea that using the properties of quantum mechanics to amplify com-
putational power was first introduced by Richard Feynman during a talk
in 1982 [1]. The study of quantum computing was theoretically motivated
until the proposal of Shor’s algorithm. This algorithm involves finding the
prime factors of a number N . This algorithm would be able to break modern
day encryptions, and it involves the use of the quantum Fourier transform to
achieve polynomial time efficiency [2]. Quantum computers would be capable
of using Shor’s algorithm to crack encryptions at a significantly faster speed
than a classical computer, which provided the motivation to start develop-
ing quantum computers to run this and other quantum algorithms. In the
present day, companies such as Google, Microsoft, D-Wave Systems, Rigetti
Computing, and IBM are building quantum computers using different tech-
niques and racing to achieve quantum supremacy.

Quantum computers take advantage of quantum mechanical properties
such as superposition and entanglement to perform calculations and store
more information in a quantum bit (qubit). Qubits are acted on by quan-
tum gates so that they perform the analog actions to classical computers.
The purpose of quantum computing is to perform calculations that are too
difficult to be executed on classical computers. But before we are able to
use these computers, we must first prove that they are able to use quantum
mechanics that will in turn be used to perform the calculations. As a proof
of principle we use algorithms that can be done classically and compare those
results to that of the quantum computer. In theory, if the quantum computer
works for small qubit systems, larger qubit systems can be implemented and
run on quantum computers.
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Chapter 2

Quantum Harmonic Oscillator

2.1 Bosonic Harmonic Oscillator

The quantum harmonic oscillator is the quantum mechanical analog to the
classical harmonic oscillator which describes a system that experiences a
restoring force when displaced from its equilibrium point. This system can
be solved analytically which is rare in quantum mechanics. The Hamiltonian
of the quantum harmonic oscillator is described by:

H =
P 2

2m
+

1

2
kX2 =

P 2

2m
+

1

2
mw2X2 (2.1)

where m is the mass of the particle, ω is the angular frequency, X and P are
the position and momentum operators respectively [3–6].

The harmonic oscillator can also be described using ladder operators.
This method allows for energy eigenvalues to be found without solving the
differential equations. The annihilation operator is responsible for lower-
ing the state while its adjoint, the creation operator, raises the state. The
annihilation operator and creation operators are defined by:

a =

√
mω

2~
(X +

i

mω
P ) (2.2)

a† =

√
mω

2~
(X − i

mω
P ) (2.3)

These operators can be applied to these energy eigenstates |n〉 lowering or
raising them to another state:

a |n〉 =
√
n |n− 1〉 (2.4)
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a† |n〉 =
√
n+ 1 |n+ 1〉 (2.5)

We can write the position and momentum operators in terms of the ladder
operators:

X =

√
~

2mω
(a† + a) (2.6)

P = i

√
~mω

2
(a† − a) (2.7)

In matrix representation, the ladder operators are described by infinite ma-
trices. However, we can approximate them using finite matrices.

a =



0
√

1 0 0 . . . 0

0 0
√

2 0 . . . 0

0 0 0
√

3 . . . 0

0 0 0 0
. . . 0

...
...

...
...

...
√
n

0 0 0 0 . . . 0


(2.8)

a† =



0 0 0 0 . . . 0√
1 0 0 0 . . . 0

0
√

2 0 0 . . . 0

0 0
√

3 0 . . . 0
...

...
...

. . .
...

...
0 0 0 0

√
n 0


(2.9)

These operators obey the following commutation relations:[
ai, aj

†] ≡ aiaj
† − aj†ai = δij (2.10)[

ai
†, aj

†] = [ai, aj] = 0 (2.11)

We can describe the Hamiltonian in terms of the ladder operators:

H = ~ω
(
a†a+

1

2

)
(2.12)

where a†a is the number operator N .
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2.2 Fermionic Harmonic Oscillator

Bosons are infinitely dimensional matrices, which means that they have an
infinite amount of energy states. Fermions on the other hand are only 2 × 2
matrices with two energy states. An example of a fermion we can look at is
the electron. The two different states are spin up and spin down state. These
particles follow Fermi-Dirac statistics as well as obey the Pauli exclusion
principle, which states that two identical fermions cannot occupy the same
state.

The fermionic harmonic oscillator is similar to the harmonic oscillator ex-
cept the operators follow the anticommutation relations unlike the “bosonic
oscillator” which follows the commutation relations. While the bosonic oscil-
lator is symmetric, the fermionic oscillator is antisymmetric [4, 5]. The ladder
operators are the same as the operators in the bosonic oscillator system. The
matrix representation however is different:

aF =

(
0 0
1 0

)
(2.13)

a†F =

(
0 1
0 0

)
(2.14)

In order to generate j fermion pairs, one must tensor the ladder operators
with Pauli matrices and identity matrices to build larger matrices [4].

aFj
= σ3 ⊗ σ3 ⊗ . . .⊗ σ3︸ ︷︷ ︸

j-1 times

⊗
(

0 0
1 0

)
⊗ 1⊗ . . .⊗ 1 (2.15)

aFj

† = σ3 ⊗ σ3 ⊗ . . .⊗ σ3︸ ︷︷ ︸
j-1 times

⊗
(

0 1
0 0

)
⊗ 1⊗ . . .⊗ 1 (2.16)

The fermionic ladder operators follow the anticommutation relations:{
ai, aj

†} ≡ aiaj
† + ajai

† = δij (2.17){
ai
†, aj

†} = {ai, aj} = 0 (2.18)

This is necessary to build larger matrices in order to study larger quantum
systems as you will see in the following chapters.
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Chapter 3

Quantum Computing

3.1 Qubits

A qubit is a logical bit that is in a superposition of 0 and 1. In a quantum
mechanical sense, a qubit is in a superposition of two states: |0〉 and |1〉.
This superposition of states can be written as:

|ψ〉 = α |0〉+ β |1〉 (3.1)

where |0〉 = [ 10 ] and |1〉 = [ 01 ]. The coefficients α and β represent the
probability amplitudes of each state. These coefficients are constrained by:
|α|2 + |β|2 = 1. One can represent a qubit using the Bloch sphere. Figure
3.1 is a Bloch sphere with a radius of 1, which shows only three degrees
of freedom although coefficients of the states can be complex or imaginary.
The fourth degree of freedom is eliminated by the normalization constraint.
The choice of having |0〉 at the top and |1〉 at the bottom of the sphere is
arbitrary.

3.2 Quantum Gates

Quantum gates are the quantum analog to logic gates in classical computers.
They perform operations on a qubit and combining quantum gates builds
a quantum circuit. Gates can operate on single qubits or multiple qubits.
There are 10 commonly used gates are the Hadamard (H) gate, Pauli-X
(NOT) gate, Pauli-Y gate, Pauli-Z (Rπ) gate, Identity (I) gate, Phase shift
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ϕ

θ

x̂

ŷ

ẑ = |0〉

−ẑ = |1〉

|ψ〉

Figure 3.1: A Bloch sphere can be used to illustrate a two level quantum
mechanical system, also known as a qubit. The pure state ψ has parameters
θ and φ which are polar angles in spherical coordinates.

(Rφ) gate, SWAP (S) gate, Controlled (cX, cY and cZ) gates, Toffoli (CC-
NOT) gate, and the Controlled SWAP (cS) gate. These gates can be repre-
sented by unitary matrices that have the following properties:

U∗U = I (3.2)

U †U = UU † = I (3.3)

The Hadamard gate acts on a single qubit, putting it in a superposition
of |0〉 and |1〉. It maps each state such that they show an equal probability
of being measured, generating superposition.

H =
1√
2

[
1 1
1 −1

]
|q0〉 H

Figure 3.2: On the left is the matrix representation of the Hadamard gate.
On the right is the circuit representation of the gate acting on one qubit.

The Pauli-X gate, also known as the NOT gate is a single qubit gate that
maps the current state to the opposite state: |0〉 to |1〉 and |1〉 to |0〉. It is
also called the bit-flip gate. On the Bloch sphere it is equivalent to a rotation
along the X axis.
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X =

[
0 1
1 0

]
|q0〉 X

Figure 3.3: On the left is the matrix representation of the Pauli-X gate. The
right shows the circuit representation of the gate acting on one qubit.

The Pauli-Y gate acts on a single qubit. It is used to map |0〉 to i |1〉 and
|1〉 to −i |0〉. On the Bloch sphere it is equivalent to a rotation along the Y
axis.

Y =

[
0 −i
i 0

]
|q0〉 Y

Figure 3.4: The matrix on the left is the Pauli-Y gate. The figure on the
right is the circuit representation of the gate acting on one qubit.

The Pauli-Z (Rπ) gate acts on a single qubit and applies a rotation along
the Z axis. It leaves |0〉 unchanged while mapping the state |1〉 to − |1〉.

Z =

[
1 0
0 −1

]
|q0〉 Z

Figure 3.5: The matrix on the left is the Pauli-Z gate. The diagram on the
right is the circuit representation of the gate acting on one qubit.

Phase shift (Rφ) gate acts on a single qubit and leaves the |0〉 unchanged
and mapping |1〉 to eiφ |1〉. On the Bloch sphere this is equivalent to a
rotation of φ degrees around the sphere.

Rφ =

[
1 0
0 eφ

]
|q0〉 Rφ

Figure 3.6: On the left is the matrix representation of the phase shift gate.
The diagram on the right is the circuit representation of the gate acting on
one qubit.
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The Identity (I) gate performs an idle operation on the qubit, leaving the
states unchanged. For a single qubit, a 2 × 2 matrix is used to act on it.

I =

[
1 0
0 1

]
|q0〉 I

Figure 3.7: The matrix on the left is a 2× 2 identity matrix. On the right is
the circuit representation of the gate acting on one qubit.

The controlled gates act on 2 or more qubits, where the first qubit is used
as a control. The control-X gate is also known as the (CNOT) gate. where
it only flips the qubit when the first state is |1〉. CNOT gates are used to
entangle two qubits [7].

Entanglement is another quantum mechanical property that qubits use.
When one of the two qubits are measured, the state of the other qubit is also
known. Figure 3.8 shows the circuit representation of a CNOT gate where
|q1〉 is the control qubit and |q0〉 is the target. Table 3.1 shows the possible
outcomes of the CNOT gate depending on the state of each qubit.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 |q0〉 X

|q1〉 •

Figure 3.8: Figure is the matrix representation of the CNOT gate. Figure is
the circuit representation of the gate, where |q1〉 is the control qubit and |q0〉
is the target qubit.
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Before After

Control Target Control Target

|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

Table 3.1: A table of possible outcomes when two qubits are acted on by a
CNOT gate.

The other controlled gates are similar to the controlled-X gate, except it
uses the Y or Z gate along the diagonal of the following matrix. It performs
the same operation as the original gate but uses a qubit for a control and the
other as a target.

C(U) =


1 0 0 0
0 1 0 0
0 0 u00 u10
0 0 u01 u11

 (3.4)

3.3 IBM Quantum Experience

3.3.1 QISKit

QISKit is an application program interface (API) developed by IBM to create
and run programs on their quantum computers and their quantum computer
simulators. The scripts are written in Python and submitted to a queue
to be ran. Each program requires credits relative to how many quantum
executions are being done on the computer.

The available backends available for use are the two 5 qubit (IBM-Q 5
and IBM-Q 5.1) and the 16 qubit (IBM-Q 16) systems. The quantum com-
puter simulator is also available for use, which provides an ideal environment
for programs to be calculated. Error rates for these backends are 10−3 which
provides a reasonable approximation for a majority of the experiments per-
formed.
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3.3.2 Mapping Quantum Systems to Qubits

An n qubit system is capable of storing a 2n size matrix. For example, a
32 × 32 Hamiltonian can be mapped to a 5 qubit system. In order to map
a system to a qubit, they must be factored into Pauli matrices based on the
size of the matrix.

H =
nk∑
i=1

xiσi (3.5)

Equation 3.5 shows how we can write the Hamiltonian in terms of a per-
mutation of Pauli matrices and 2 × 2 identity matrix multiplied by some
coefficient x. nk represents the amount of permutations (n is the different
2 × 2 matrices and k is the number of elements being tensored together)
there are depending on the size of the system and σi is that permutation
of the tensored matrix. We can take the trace of the Hamiltonian and the
tensored Pauli matrix combinations to find the coefficients needed to rebuild
the system on the quantum computer. To find the coefficient xi for a q qubit
system, we use the following equation:

xi =
tr(Hσi)

2q
(3.6)

where σi represents the ith permutation of the tensor products. Once the
nonzero coefficients are found for all possible combinations of Pauli matrices,
they can be read into the Python script and rebuilt on the quantum computer.
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Chapter 4

Su-Schrieffer-Heeger Model

4.1 Background

The Su-Schrieffer-Heeger (SSH) Model is a finite 1-dimensional lattice model
used to describe polyacetylene (C2H2)n molecules [6, 8–19]. This chain is
used to study the effects of topology in condensed matter physics as well as in
quantum field theory, where properties of the molecule depend directly on the
arrangement and structure. Figure is a 3 dimensional model of polyacetylene
created in Avogadro. An interesting trait of this model is that it alternates
between single and double bonds.

This model follows the second quantization of the tight-binding model
which is written as:

H = −t
∑
〈σi,σj〉

(c†i,σ, cj,σ +H.c.) (4.1)

where t is the hopping integral, σ is the spin polarization i and j repre-
sent the nearest neighbor index, and H.c. is the Hermitian conjugate of the
operators. The creation operator c†i creates an electron at site i while cj
annihilates an electron at site j. These operators obey the anticommutation
relation:{ci, c†j} = aia

†
j + a†jai = δij

The SSH model is of spinless electrons so the σ term is not relevant [9].
The Hamiltonian for a chain with N groups and mass M is:

HSSH = −
N∑
i

ti+1,i(c
†
i+1ci +H.c.) +

K

2

N∑
i

(ui+1 − ui)2 +
M

2

N∑
i

u̇2i (4.2)
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where t is the intersite hopping: ti+1,i = t0 − g(ui+1 − ui), t0 is the hopping
term without vibrations, g is the electron-phonon (fermion-boson) coupling
constant [10]. K is the spring constant, ui is the group displacement along
the chain and u̇2i is the kinetic energy term. For simplicity, we use the
Born-Oppenheimer approximation, which assumes that the chain is perfectly
combined or dimerized [8, 20]:

un = (−1)nu (4.3)

This makes every displacement term even in distance, reducing the complex-
ity of our Hamiltonian.

Figure 4.1: A 3D representation of polyacetylene (C2H2)n. n represents the
how many C2H2 groups are on the chain. The chain alternates between single
and double bonds.

4.2 Project

4.2.1 Background

The objective of this project is to use IBM’s QISKit to find the ground state
energy of the SSH model. The variational quantum eigensolver is the ideal
method to achieve this. We can vary certain parameters as well as the system
itself to see how well the eigensolver does with changing variables [7, 21].

The system is first created and factored in MATLAB before being written
to a text file. The text file is then read into a Python script and the variational
quantum eigensolver then picks a random starting point and optimizes the
parameters until the maximum amount of trials is reached. At the end of
the optimization the program should achieve the ground state energy of the
system or approach it.
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4.2.2 Variational Quantum Eigensolver

The variational method says that the expectation value of a Hamiltonian
when using trial states will give you an upper bound.

〈ψtrial|H |ψtrial〉 ≥ Eground (4.4)

This method consists of varying the trial state parameters until the upper
bound is minimized. These parameters are adjusted until it converges to the
ground state energy:

〈ψtrial|H |ψtrial〉 = Eground (4.5)

The variational quantum eigensolver (VQE) starts with initial parameters
and the quantum circuit is created. The circuit is then evaluated and the
lowest energy state is the cost of that expectation value [22–29]. This process
is repeated for a set amount of trials defined by the user and the final cost of
the optimization is the ground state energy which the algorithm converges
to.

Figure 4.2: Flowchart of the VQE. It begins with initial values for your trial
state and minimize them in order to obtain the ground state energy.

Quantum depth is a parameter that can be varied in the eigensolver.
The depth refers to the amount of times the quantum circuit is repeated.
Circuit depth can help yield better results in some cases such as executing
programs on a quantum computer simulator since it does not experience
decoherence. Figure 4.3 is a representation of the trial circuit used evaluate
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|q0〉 Ry Rz

|q1〉 Ry Rz

|q2〉 Ry Rz

|q3〉 Ry Rz

|q4〉 Ry Rz

Figure 4.3: Representation of the trial circuit used for the VQE. The depth
of the circuit is 1 with an Ry and Rz gate are acting on each qubit with at
first an arbitrary rotation. The VQE then optimizes the angles necessary to
approximate the ground state energy.

the Hamiltonian. The parameters being optimized are the angles, in radians,
used in the gates. By minimizing these parameters, the ground state energy
can be achieved.

Quantum circuits are essentially the state that are acting on the system.
By adding or removing gates, the state is essentially being changed to either
be unsuitable or fit the system. A better trial state consists of following
patterns that the Hamiltonian show. By constructing a state that shows a
similar pattern to the system, it will converge to the ground state faster than
if it did not follow a similar pattern [30].

4.3 Results

With a quantum depth of 3, the eigensolver is able to converge to the ground
state energy with a 7% error. Figure 4.4 shows that at a quantum depth of
3 that the algorithm converges to an energy state above the exact ground
state of the given system.
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Figure 4.4: Energy optimization trial run for a 5 qubit system with a quantum
depth of 3. The percent error was 6.7%.

Comparing quantum depth to how well the variational quantum eigen-
solver converges, (Figure 4.5) after increasing the depth from 2 to 3, there
is a significant difference, but after increasing it further, the results did not
change. This proves that increasing the quantum depth past a certain point
does not improve your optimization.
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Figure 4.5: Quantum depth versus percent error. There is a significant dif-
ference when using a depth of 2 versus a depth of 3.

Simulating a 5 qubit system with shots equal to 100 did not yield good
results. The algorithm converged to an energy that was 400% greater than
the ground state energy of the system (Figure 4.6). An explanation to why
this calculation did not converge is that there was not enough data for the
variational quantum eigensolver to converge properly. If the amount of shots
per trial were increased to 2048 or more, the eigensolver will have an easier
time converging to the correct ground state. The only pitfall for increasing
the amount of shots is the amount of time needed to complete the calculation.
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Figure 4.6: Energy optimization trial for a 5 qubit system with a quantum
depth of 1 and shots equal to 100. The percent error was 399.1%.

4.4 Conclusion

We studied and visualized the ground state properties of the Su-Schrieffer-
Heeger model by creating the Hamiltonian in MATLAB and using the varia-
tional quantum eigensolver to calculate the ground state energy on the IBM-
Q. The variational quantum eigensolver is able to converge to the ground
state energy of our system with a minimum of 7% error. More research is
needed into how to create improved trial functions that will allow the eigen-
solver to converge to the correct ground state. Large systems such as the one
we have studied require more complex trial circuits. Increasing the amount
of shots can also allow the algorithm to converge closer to the correct ground
state, more iterations per trial makes for a better average. Next steps include
studying more realistic systems, which require more qubits and tend to be
more complex.
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